
POLICEd RL: Learning Closed-Loop Robot Control Policies
 with Provable Satisfaction of Hard Constraints

2D illustrative example
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Conclusion

• POLICEd RL provably enforces an affine constraint

• Only requires a black-box model of the environment

• Tractable safety verification at the buffer vertices

Introduction

We propose POLICEd RL, a novel RL algorithm to guarantee satisfaction 
of an affine constraints in closed-loop with a black-box environment.

Key insights:

• make the learned policy affine around the unsafe area, 

• use this affine region as a repulsive buffer to keep trajectories safe. 

Our approach: POLICEd RL   

Define a buffer  ℬ = 𝑠 ∶ 𝐶𝑠 ∈ 𝑑 − 𝑟, 𝑑  of radius  𝑟 > 0.

Use POLICE [2] to make policy 𝜇𝜃 affine over buffer ℬ.

Estimate how far from affine are dynamics f with ε

𝐶𝑓 𝑠, 𝑎 − 𝐶 𝐴𝑠 + 𝐵𝑎 + 𝑐 ≤ ε    for all 𝑠 ∈ ℬ and 𝑎 ∈ 𝒜. 

75.8

12

28.4

2 2

89.9
100

86.2 86.2
93.4 93.4

100

0

20

40

60

80

100

Target reaching %  (↑) Target reaching % without 

violations  (↑)

Average % constraint 

satisfaction  (↑)

TD3 [3] CPO [1] PPO-Barrier [4] POLICEd RL (ours)

POLICEd RL uses a buffer to push the 
KUKA arm away from the constraint

POLICEd RL learns to reach the target without any 
constraint violation thanks to its affine buffer.

Stabilizing the MuJoCo inverted pendulum

Reach-avoid with KUKA arm

Objective: maintain 𝜃 ∈ −𝜃𝑚𝑎𝑥 , 𝜃𝑚𝑎𝑥

Constraint: ሶ𝜃 < 0 near 𝜃𝑚𝑎𝑥 to prevent falling past 𝜃𝑚𝑎𝑥
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Reward
𝑅 𝑠 𝑡 , 𝑎(𝑡)  

Action
a 𝑡

Black-box continuous system
ሶ𝑠(𝑡) = 𝑓 𝑠 𝑡 , 𝑎(𝑡)

Affine constraint
𝐶𝑠 𝑡 ≤ 𝑑

Learned deterministic policy

𝑎 𝑡 = 𝜇𝜃 𝑠 𝑡 ∈ 𝒜

State  𝑠 𝑡

State  𝑠 𝑡

Closed-loop constrained RL 

Theorem:  If  𝜇𝜃 is affine over  ℬ  and for some affine measure 𝜀, repulsion condition  

𝐶𝑓 𝑣, 𝜇𝜃 𝑣 ≤  −2𝜀  holds at all vertices  𝑣  of  ℬ, then  𝐶𝑠(𝑡)  <  𝑑  for all  𝑡 ≥ 0. 

Classification of purple vs orange with red boundary, 
forced to be affine by POLICE [2] in black square.

Algorithm

1. Calculate buffer radius 𝑟

2. Determine buffer ℬ and its vertices

3. Sample transitions 𝑠, 𝑎, 𝑠′  with 𝑠 ∈ ℬ and estimate 𝜀 with least-square approximation

4. Train 𝜇𝜃 until repulsion condition  𝐶𝑓 𝑠, 𝜇𝜃 𝑠 ≤ −2𝜀  holds on the vertices of ℬ

 Guarantees 𝐶𝑠 𝑡 < 𝑑  if  𝐶𝑠 0 < 𝑑.

• HJB reachability
• Control Barrier Functions (CBFs)
• projection on safe set
all require white-box dynamics

Learned CBF certificates and learned safety-critics 
provide no safety guarantees

Typical safe RL:
• reward shaping
• Constrained Markov Decision Processes [2]

no safety guarantees

The POLICE algorithm [2]

Bias modification to make a deep neural 
network affine in a user-provided region.

constraint

target 

Baseline RL policy      POLICEd RL (ours)
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