

Robotics: Science and Systems (RSS) 2024

Jean-Baptiste Bouvier Kartik Nagpal Negar Mehr

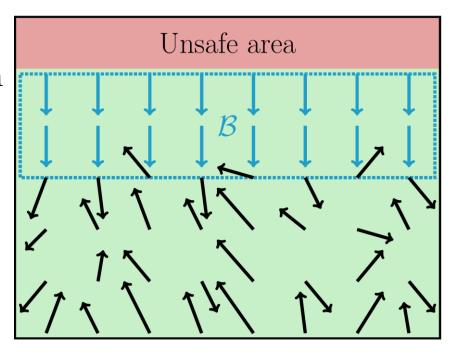
POLICEd RL: Learning Closed-Loop Robot Control Policies with Provable Satisfaction of Hard Constraints

Introduction

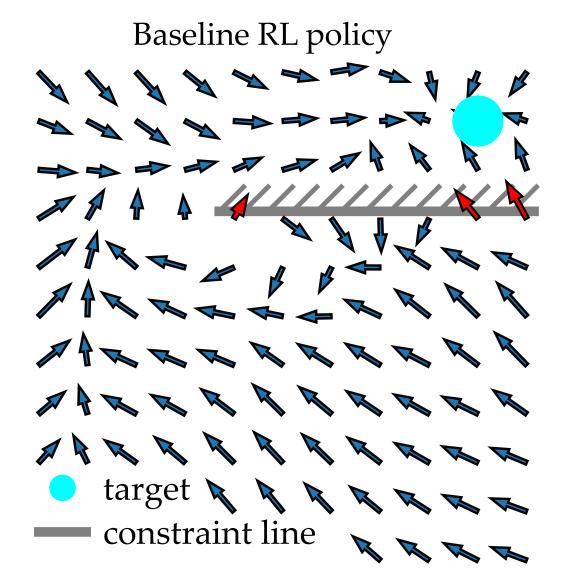
We propose **POLICEd RL**, a novel RL algorithm to **guarantee** satisfaction of an affine constraints in closed-loop with a black-box environment.

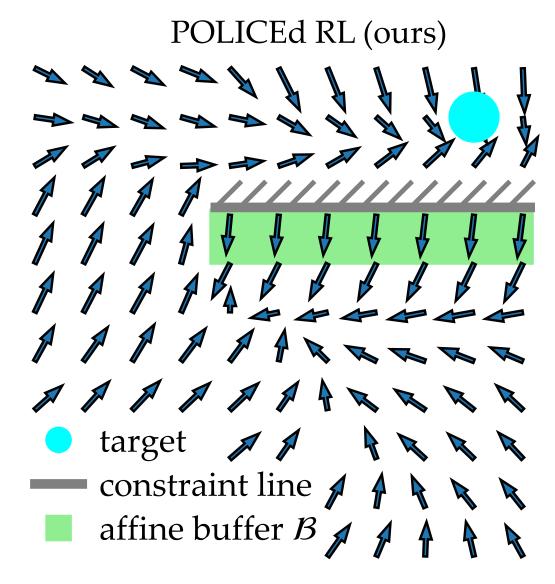
Key insights:

- make the learned policy affine around the unsafe area,
- use this affine region as a repulsive buffer to keep trajectories safe.



2D illustrative example

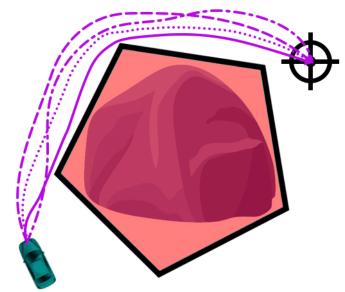




Enforcing constraints in RL

Soft Constraint **Constraint violations are penalized** but no guarantees of respect. Possible Typical safe RL: Trajectories Target • reward shaping \bigcirc • Constrained Markov Decision Processes [2] Constraint no safety guarantees Region

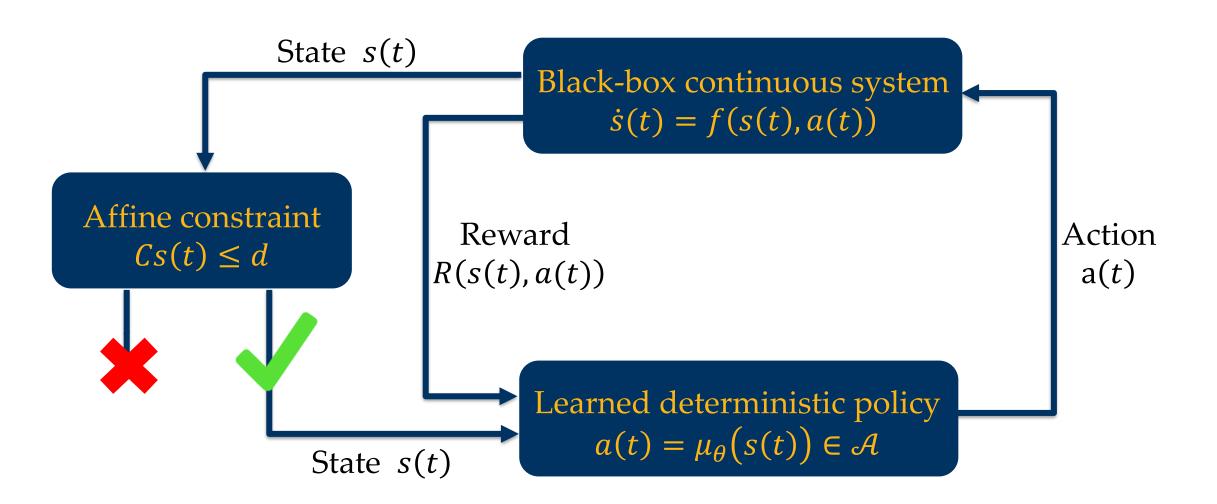
Hard Constraint (Ours) Adheres to constraints by construction, and guarantees no violations.



- HJB reachability Control Barrier Functions (CBFs)
 - projection on safe set all require *white-box dynamics*

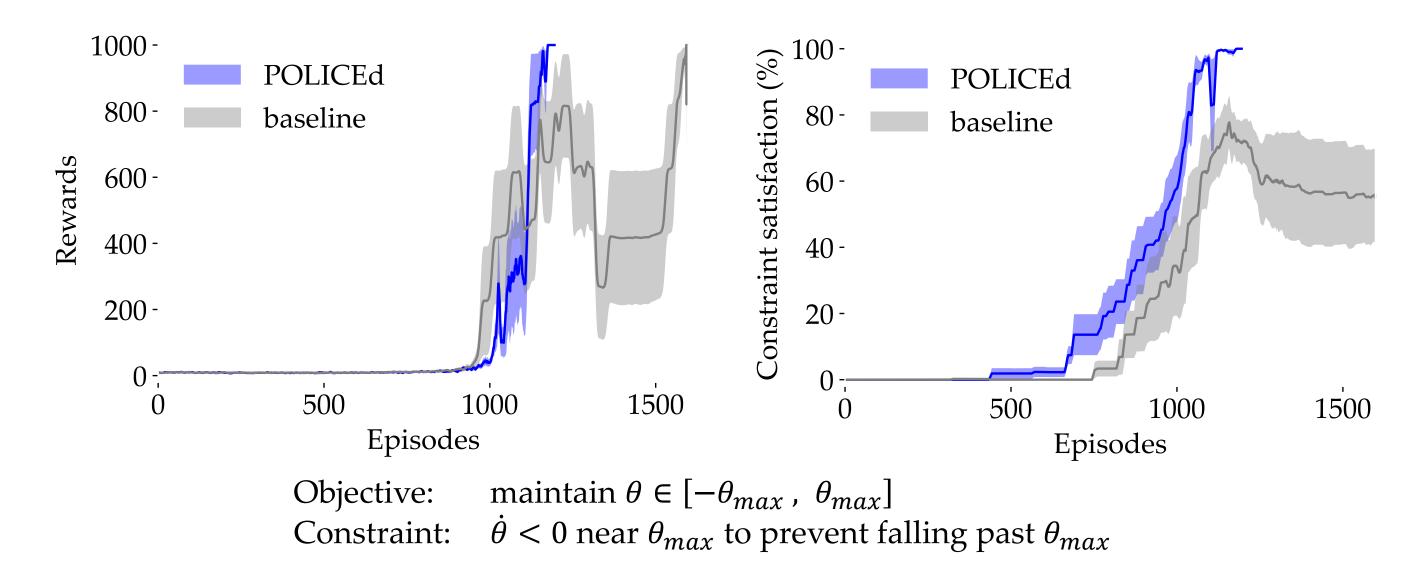
Learned CBF certificates and learned safety-critics provide no safety guarantees

Closed-loop constrained RL

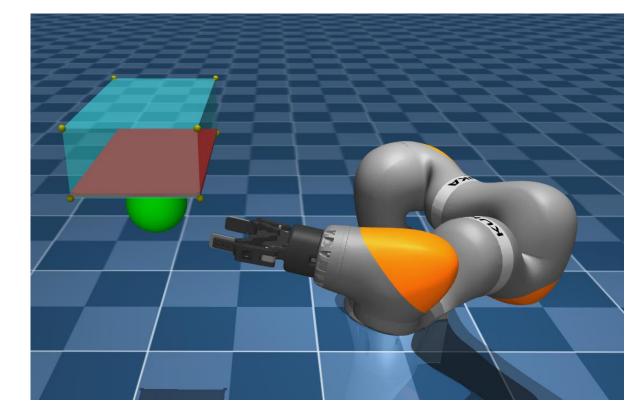


POLICEd RL learns to reach the target without any constraint violation thanks to its affine buffer.

Stabilizing the MuJoCo inverted pendulum

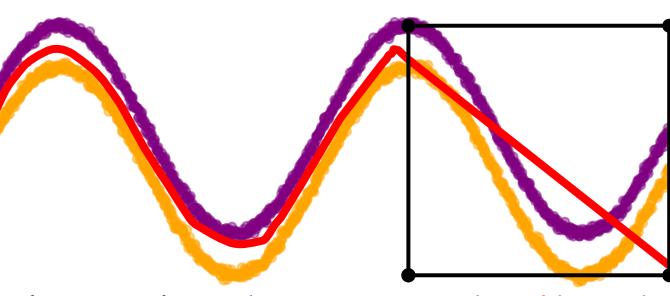


Reach-avoid with KUKA arm



The POLICE algorithm [2]

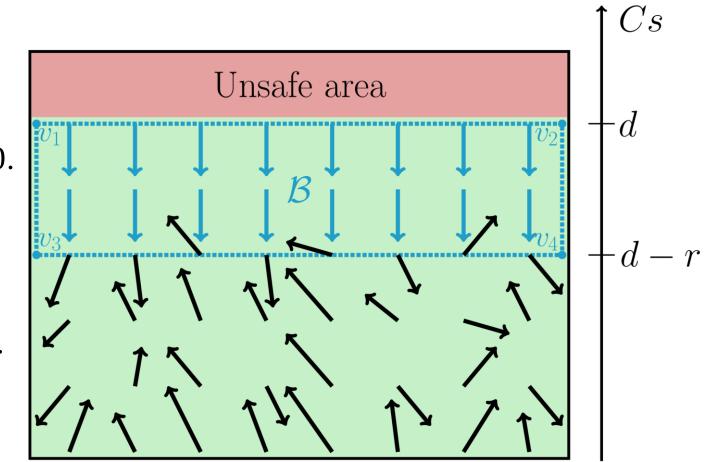
Bias modification to make a deep neural network affine in a user-provided region.

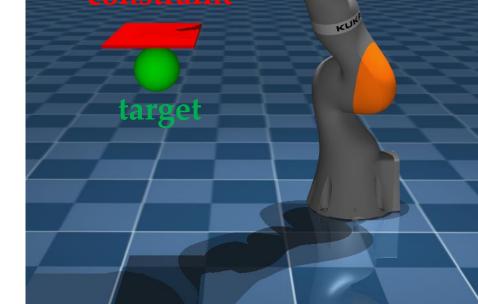


Classification of **purple** vs **orange** with **red** boundary, forced to be affine by POLICE [2] in **black** square.

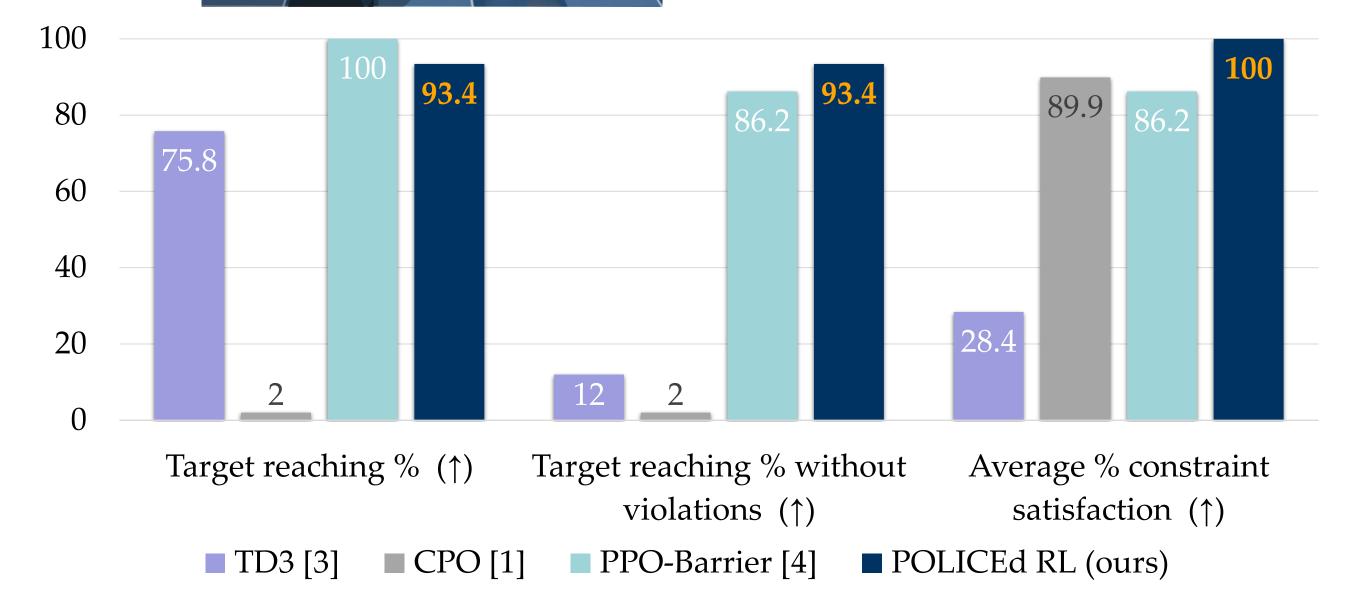
Our approach: *POLICEd RL*

Define a buffer $\mathcal{B} = \{s : Cs \in [d - r, d]\}$ of radius r > 0. Use POLICE [2] to make policy μ_{θ} affine over buffer \mathcal{B} . Estimate how far from affine are dynamics f with ε $|Cf(s,a) - C(As + Ba + c)| \le \varepsilon$ for all $s \in \mathcal{B}$ and $a \in \mathcal{A}$.





POLICEd RL uses a **buffer** to push the KUKA arm away from the constraint



Conclusion

- POLICEd RL provably enforces an affine constraint
- Only requires a black-box model of the environment

Theorem: If μ_{θ} is affine over \mathcal{B} and for some affine measure ε , repulsion condition $Cf(v,\mu_{\theta}(v)) \leq -2\varepsilon$ holds at all vertices v of \mathcal{B} , then Cs(t) < d for all $t \geq 0$.

Algorithm

- Calculate buffer radius *r*
- Determine buffer \mathcal{B} and its vertices
- Sample transitions (*s*, *a*, *s'*) with $s \in B$ and estimate ε with least-square approximation 3.
- Train μ_{θ} until repulsion condition $Cf(s, \mu_{\theta}(s)) \leq -2\varepsilon$ holds on the vertices of \mathcal{B} 4. Guarantees Cs(t) < d if Cs(0) < d.

Tractable safety verification at the buffer vertices

References

- Full text available on ArXiv at <u>https://arxiv.org/pdf/2403.13297</u>
- Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. "Constrained policy [1] optimization." In International Conference on Machine Learning, pages 22 - 31, 2017.
- Randall Balestriero and Yann LeCun. "POLICE: Provably optimal linear constraint enforcement [2] for deep neural networks." In IEEE International Conference on Acoustics, Speech and Signal *Processing*, pages 1 - 5, 2023.
- Scott Fujimoto, Herke Hoof, and David Meger. "Addressing function approximation error in [3] actor-critic methods." In International Conference on Machine Learning, pages 1587 – 1596, 2018
- Yujie Yang, Yuxuan Jiang, Yichen Liu, Jianyu Chen, and Shengbo Eben Li. "Model-free safe [4] reinforcement learning through neural barrier certificate." IEEE Robotics and Automation Letters, pages 1295 - 1302, 2023.

https://iconlab.negarmehr.com/POLICEd-RL