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Introduction

Unsafe area

of an affine constraints in closed-loop with a black-box environment.

We propose POLICEd RL, a novel RL algorithm to gu arantee satisfaction lll ........ 1 ........ l ........ 1 ........ l ........ 1
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Key insights: j*\l\ S~ \\
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* make the learned policy affine around the unsafe area, V4 ™ .\ ?
- use this affine region as a repulsive buffer to keep trajectories safe. |/ /‘ \ \ '\\,\ ‘\, /‘ ‘\.
Enforcing constraints in RL __Soft Constraint
penalize
but no guarantees of respect.
Typical safe RL: Irnjectories <" g N S
 reward shaping /,”:,.--"':" °
* Constrained Markov Decision Processes [2] [/ o
no safety guarantees ',’ %Tgfj;n
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Hard Constraint (Ours)
Adheres to constraints by construction, and guarantees no violations.
* HJB reachability
* Control Barrier Functions (CBFs)
* projection on safe set
all require white-box dynamics
Learned CBF certificates and learned safety-critics
provide no safety guarantees
Closed-loop constrained RL
State s(t)
Black-box continuous system
JOESIGORIG)
Reward Action
R(s(t),a(t)) a(t)
Learned deterministic policy
State s(t) alt) = Ho (S(t)) S
The POLICE algorithm [2]
Bias modification to make a deep neural
network affine in a user-provided region.
@
Classification of purple vs with red boundary,
forced to be affine by POLICE [2] in black square.
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Our approach: POLICEd RL
Unsafe area
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Define a buffer B ={s:Cs € [d —r, d]} of radius r > 0. l, by 4 bl
Use POLICE [2] to make policy pg atfine over buffer B. _2 Lol Lol VUIE
EREETRR NS, . D AR =3 +d—r
Estimate how far from affine are dynamics f with € ] \l '\ \X\ \\ \\.
|ICf(s,a) —C(As+Ba+c)|<e forallseBanda € A. 4 T\ '\ 7
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Theorem: If ug is affine over B and for some affine measure ¢, repulsion condition

Cf(v,ug(v)) < —2¢ holds at all vertices v of B, then Cs(t) < d forall t > 0.

Algorithm

1. Calculate buffer radius r
2. Determine buffer B and its vertices

3. Sample transitions (s, a,s’) with s € B and estimate ¢ with least-square approximation

4. Train pg until repulsion condition Cf (S, Ug (S)) < —2¢& holds on the vertices of B

Guarantees Cs(t) < d if Cs(0) < d.

2D illustrative example

Baseline RL policy POLICEd RL (ours)
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POLICEd RL learns to reach the target without any
constraint violation thanks to its affine buffer.
Stabilizing the MuJoCo inverted pendulum
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Objective: ~ maintain 8 € [—0,4x, Omax]

Constraint: 6 < 0 near Omax to prevent falling past 0,4,

Reach-avoid with KUKA arm
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POLICEd RL uses a buffer to push the
KUKA arm away from the constraint
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TD3 [3] CPO [1] PPO-Barrier [4] ™ POLICEd RL (ours)
Conclusion
« POLICEd RL provably enforces an affine constraint 3 I'Xi\/
*  Only requires a black-box model of the environment 1
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« Tractable safety verification at the butfer vertices
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